Recommendations and Considerations for the Use and Cleaning of Lactation Rooms During the COVID-19 Pandemic (v.2; October 10, 2020)

Authors: Jennifer Yourkavitch, MPH, PhD, IBCLC; Ellen Chetwynd, PhD, MPH, BSN, IBCLC; Paige Hall Smith, PhD, MSPH

Department of Public Health Education

Introduction

As the COVID-19 pandemic continues to ravage communities around the world, and businesses, schools, government buildings, airports, and other spaces begin to open for public use, it is important to consider how to maintain lactation rooms for public use. These spaces are unique in that, unlike restrooms, they serve a particular clientele with the purpose of expressing a body fluid that has not been found to transmit the virus [1] or feeding an infant. They are also not as highly trafficked as restrooms. However, like restrooms, they have certain high-touch surfaces which may include doorknobs, light switches, sink handles, countertops, chairs, tables, and multi-user pumps, and may not be well ventilated. They may be designed to serve single or multiple users and they may not be cleaned between use according to typical maintenance schedules. In preparing to support the re-opening and maintenance of lactation rooms at our institution, we recognized the need for evidence-based guidance to support human milk expression in public spaces during the pandemic. Although evidence is emerging quickly and is of varying quality, we offer these recommendations and considerations using available information and recognizing that they should be updated as more evidence emerges [2]. We have categorized considerations into these areas: air quality and flow, cleaning of the space,
equipment in the room, and behavior in the room. We have provided evidence where available and noted where evidence is needed.

Air Quality and Flow

The dominant feature of coronavirus transmission currently is a higher risk in enclosed spaces with infected people [3]. The virus can linger in the air for up to three hours [4]. Evidence suggests that most transmission occurs in a space occupied by an infected person [5]; however, limited evidence suggests that aerosol transmission is possible in a space shortly after an infected person has left [6]. It is reasonable to take precautions if viruses are present in the room and WHO recommends “fresh, clean air in all workplaces” [7]. So how can facility managers address the issue of air flow?

Some options to consider include:

- Create private, protected outdoor spaces for lactation. These spaces could require only normal cleaning and not disinfection. [8]
- Upgrade the air filtration system. [9]
- Open windows. [9]
- Space out usage so that there are breaks between users, which allows the virus to die over time in the empty space. Restrict usage to one person (plus nursing infant, if applicable) at a time. [5]
 - This can be accomplished with electronic booking systems that pre-specify usage and non-usage times.
 - If a reservation system is not feasible, there are other options:
 - Rooms with mediated access (user must check out key or interact with a moderator for every room use). The person providing room access records time of departure and ensures breaks between users.
 - Unmediated access (user enters the room without going through another person/process). The user could mark departure time on a whiteboard on the outside of the door.
- Ask users to wear a mask while in the room. [10]

Cleaning

Coronavirus can be transmitted if a person touches a contaminated surface and then touches their eyes, nose, or mouth [11]. It can be killed by simple cleaning procedures with soap and water or other cleaning products. Facility managers can:
● Ensure thorough cleaning as recommended by CDC [12] by professional cleaners at least once per day.
● Provide supplies in the room: hand sanitizer (at least 60% alcohol) and cleaning wipes. If there is a sink, provide paper towels and soap.
 ○ Advise users to wipe down surfaces they touch (chair armrests, the pump, countertops, refrigerator handle, light switches, doorknobs) when they arrive and just before they leave the room with an antiseptic wipe [11].
● Provide tissues for personal use.
● Provide a trash receptacle for used tissues, paper towels, and wipes.

Equipment in the room

Keep the room as user-friendly as possible while eliminating anything extraneous. Provide places to set personal equipment e.g., shelves or tables, and advise users to wipe those surfaces before and after use [11].

● There is no need to remove or switch out chairs, pumps (designed for multiple users), signs, or informational posters.
 ○ The virus lives longer on plastic than on cloth, so do not cover chairs or surfaces with plastic [11, 13].
● Remove extra pillows
● Provide disposable table covers or paper towels for surfaces where equipment or pump parts may be placed. These covers would need to be disposed of and replaced between users.

Behavior in the room

To assist lactation room users to minimize their risk of exposure in the room and to avoid contaminating the space themselves, consider advising the following, through posted signs and room use agreements:

● Wash hands before pumping. [7]
● Avoid touching your face. [11]
● Touch communal surfaces as little as possible while in the room. [11]
● Wear a mask while in the room. [10]
● Restrict usage to one person at a time. [5]
● Use the electronic booking system or other arrangement to reserve time in the room.
● Bring your own pillows (if needed), pen (for filling out user form, if needed), cleaning supplies for cleaning their personal pump parts (i.e., a brush, sponge, or other implements).
What to do if a lactation room client is later found to have confirmed illness

Following standard quarantine precautions, if someone who used the lactation room within the past two weeks reports suspected or confirmed infection, then that person should refrain from using the room for 10 - 20 days from when symptoms first appeared [timing varies depending on conditions, see reference 14]. If the room is professionally cleaned each day, no further effort is needed to make the room safe. If the room is not professionally cleaned each day, then consider having the room professionally cleaned in the event that someone using the room reported that they were infected. In addition, the CDC recommends that anyone exposed to someone with COVID-19 should quarantine for 14 days following exposure. [15]

Evidence gap

A major evidence gap for the use of indoor space is the amount of time needed for airborne virus to die or disappear under different conditions, including an empty space.

Endnotes

2. Given the novelty of the virus and the fast proliferation of research, most research would not be graded “high-quality” using conventional standards at this point (Alexander PE et al. 2020). As time passes, the quality of research will improve. However, we are in a time where decisions about safety must be made and so we rely on the information available and our training to guide decisions and recommendations.

3. WBUR reports that University of Maryland Environmental Health professor Donald Milton says that outbreaks are more likely to occur in indoor, poorly ventilated environments. Available at: https://www.wbur.org/hereandnow/2020/05/19/air-conditioning-coronavirus

4. “A study done by the National Institute of Allergy and Infectious Diseases' Laboratory of Virology in the Division of Intramural Research in Hamilton, Montana helps to answer this question. The researchers used a nebulizer to blow coronaviruses into the air. They found that infectious viruses could remain in the air for up to three hours. The results of the study were

11. “A recent study found that the COVID-19 coronavirus can survive up to four hours on copper, up to 24 hours on cardboard, and up to two to three days on plastic and stainless steel. The researchers also found that this virus can hang out as droplets in the air for up to three hours before they fall. But most often they will fall more quickly.” Source: https://www.health.harvard.edu/diseases-and-conditions/covid-19-basics

